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Fig. 1 A perspective grid derived from a matrix of values
computed from linearized measurements.

across thelines. Measurements of many geophysical properties,
made by moving vehicles, ships and so on, are often distributed
along lines which are not necessarily straight. They may
cross one another but the distance between adjacent measure-
ments on the lines is usually much less than the distance
between the lines. Such a distribution of measurement points
may be found in other situations where the two dimensions
are not spatial.

By Cnle’s method, the generalized surface is actually a
matrix of Z -alues and the initial values of the matrix elements
are derived from a global least squares fit of a second-order
two-dimensional polynomial function. This global surface is
then modified by a local least squares quadratic fit involving
the 3 by 3 matrix around each data point. The modified
matrix is then smoothed by means of an algorithm which
removes discontinuities of gradient between the global and
local surface but does not affect quadratic surfaces. The
algorithm is made iterative by using the matrix obtained as
the new global surface for a repeat of the process. The effect
of this is the production of a smooth surface which passes
through the data points. In areas where data are absent, the
algorithm tends to extrapolate first and second derivatives.
In practice this may be undesirable. Imagine a string of data
points passing over a hill in the measured property. If the
path deviates slightly from a straight line as it crosses the hill,
this would be interpreted as a steep slope perpendicular to
the track. But this would not be the subjective evaluation of
the data, because such steep slopes are not found along the
path of measurement. When the source data are linearized,
more information is available about the statistical nature of
the surface. I have therefore modified Cole’s algorithm to
improve these two aspects—the extrapolation of first and
second derivatives, and the use of the statistical information,
It is necessary to specialize somewhat because I propose that
on a large scale neither the first nor second derivatives of the
measured property can be extrapolated indefinitely. Instead,
in any areas without data, we may expect a horizontal plane:
this is true for many geophysical measurements but may not
be valid for other types of property. Bearing this in mind,
each element of the initial matrix of Cole is set equal to the
value of the nearest data point. Then a single data point
yields a single-valued plane, and at points away from the data
the resultant surface tends to the value of the nearest data
point. In this way improbable cross track gradients are not
generated because initially the matrix values at either side of
the track are equal to the value on the track, although there
will in general be discontinuities between tracks. If the
property being contoured has known discontinuities within
the area of the matrix, in particular if there is a boundary
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(such as a known coastline) beyond which contours should
not be plotted, then any data from beyond the boundary are
omitted (the survey is discontinued at the boundary) and,
after contouring, the plane surface which will extend beyond
the boundary into the area of no data is omitted. The local
quadratic least squares fit of Cole has been retained because
on a small scale these extrapolations are permitted. The
principal change to Cole’s algorithm is in the smoothing. The
source data are scanned along the survey lines and the root
mean square gradient between adjacent data points is deter-
mined. We may now assume that the function which has been
measured has statistical properties which are isotropic. To
be more specific, I assume that the mean square gradient
observed along the track is the same as that expected across
the track. We may therefore smooth the matrix obtained by an
amount which increases rapidly for gradients greater than the
r.m.s. gradient determined along the track. The gradient in
the vicinity of each matrix point is found, and the Z value
changed by an amount AZ a/(1 +a) in such a way as to reduce
the gradient; a is the ratio between the local gradient and the
r.m.s. measured gradient. Thus a matrix is produced repre-
senting a surface which passes through the data points and has
the same statistical properties as the source data. This method
is only possible because the data are distributed along lines,
and it is not suitable for randomly scattered data. The matrix
obtained is then contoured by a standard computer routine
to produce a contour map. Alternatively, it is worth consider-
ing a perspective grid as shown in Fig. 1.
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Distance betweer: Sets

DisTaNcCE functions expressing the degree of dissimilarity of
sets have found use in physical anthropology?!, psychology?,
numerical taxonomy?®, ecology® and elsewhere. During an
ecological study by one of us, it was noticed that the similarity
coefficient of Jaccard®, used in ecology, gives rise to a metric
function satisfying the triangle inequality. For two non-empty
finite sets X, Y, the Jaccard coefficient is the number of elements
in the intersection XNY of X and Y. This coefficient

(we use absolute value signs to indicate number of elements)
has a heuristic interpretation. It measures the probability
that an element of at least one of two sets is an element of
both, and thus is a reasonable measure of similarity or “over-
lap” between the two. The one-complement

dX, V=1-r(X, Y) (1)

may then be considered a measure of the dissimilarity of the
two sets.

To study patterns of similarity or relatedness of sets of data,
it is often helpful to represent them abstractly as points in a
space, which can be studied by the methods of cluster analysis
or ordination. For this, it is an advantage if the measure of
dissimilarity has the formal properties of a metric or distance
function.

If X, Y and Z are non-empty finite sets, we claim that

dX, V)Y+d(Y, Z)zd(X, Z) 2)
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Fig. 1 Representation of sets and subsets.

By the definition of the function d, this reduces to showing that
| XNY| |YNZ| | XNZ|

< + (3)
| XUY] |YUZ]  |xUZ]

We break up XU YUZ into seven disjoint subjects 4 to G which

we use to transform inequality (3) into a manageable form.
Thus

XUYUZ=(4AUBUCYU(DUEUFUG
where
A=X—-(YUZ), B=Y—-(XUZ), C=Z—-(xUY),
D=X—-(AVZ), E=Y—-(XUB), F=Z—(CUY),
G=X—(DUFUA)=Y—-(DUEUB)+ Z—~(EUFUC)

This is best understood from Fig. 1.
Ifa, b, c,...denote the number of elements in the correspond-
ing sets A, B, C, . . ., the inequality (3) becomes
e + +
Lete_JSre

£+ 1
y—a v-—b “)

d+ g

Vv — ¢

where v=a+b+c+d+e+f+g, the number of elements of
XUYUZ. Symbolically written, the inequality (4) becomes

d e f
S+ <+ 1
¢ a b
or
a’b'd + b'ce <acf + abc
or
W —av — by + ab)d’ + (v* — bv — ¢v + be)
e < —av—cv+ ac)f + (v* — av — bv + ab)c’

This inequality is equivalent to 0 <3

+v? (—a—b—-c—d—e+f—g)
+v [ab+ ac+ be+ ad+ bd+ be + ce + 2bg — af — ¢f ] &)
+{—abc—abd— abg— bce— bcg+ acg + acf}

The second term is equal to v? (2f—») so that the sum of the
first two terms is 2/v*. The inequality now, symbolically, is

0<v@2fr+[ D+{ }

Because v=a+b+c+d+e+f+g the two negative terms of
[ ]cancel with terms in 2fv. And the negative terms of { }
cancel with terms in v[ ], namely with terms of the part

a(bc+ bd+2bg)+ b(ce)+ c(2bg) + d0+ €0+ f O+ g0

of v[ ]. Because all negative terms on the right side of
inequality (5) cancel, the inequality is established.

d(X, Y)satisfies the triangle inequality (2) and is also positive
definite (d(X, Y)=0 if and only if X=7Y) and symmetric
d(Xx, )= (d(Y, X)), so it has the properties of a metric function
in a space, the elements of which are finite non-empty sets. The
argument presented does not depend essentially on the finiteness
of the sets, and the theorem may be generalized by introduction
of a suitable measure function for infinite sets.
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We have not yet found a simpler or more elegant proof of
this theorem based on the theorems of set-algebra. The
absence of, or difficulty of finding, such a proof may explain
the novelty of the result.

The function d is related to another metric function

d'X,Y)=|XUY—-(XNY)|
where XUY - (XNY) is the symmetric difference of X, Y in that

1
d=--— - d
XUyl
for non-empty finite sets X, Y, d’, in turn, is a constant times
the one-complement of a well-known measure of similarity,
the simple matching function

. 1XNY| + |XUY]
r = ——
| XUY|
The properties of d and d’ are, however, quite different, as
one might expect from the probabilistic quality of d in ranging
from O to 1. The probabilistic and geometric features induced
by d are the subjects of further study.
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Specific RNA Methylase associated
with Avian Myeloblastosis Virus

AT least three enzymes of DNA metabolites are found in the
RNA tumour virus group-—an RNA dependent DNA poly-
merase!’2, a DNA dependent DNA polymerase® and an
endonuclease*. We now report that a specific RNA methylase
is associated with the avian myeloblastosis virus (AMV) which
transfers a methyl group from S-adenosylmethionine to
certain guanine bases in RNA to give N2-methylguanine.
There is linear incorporation of the methyl group of
S-adenosylmethionine by virus from a high-speed pellet which
depends on the addition of both surfactant and tRNA (Fig. 1).
There is, however, an appreciable time-dependent background,
which does not represent incorporation into endogenous
nucleic acid bases, nor does it seem to decrease when rate-
zonal purified virus is compared with the high-speed pellet
from viraemic plasma. Because this background represents
almost one-third of the measured incorporation, we have
devised a column assay to isolate and identify the major
radioactive nucleic acid components formed in the reaction.
The major radioactive peak in the column assay consists
solely of N2-methylguanine as identified in six thin-layer
chromatography solvents (including isopropanol-HCl-water,
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