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Pattern Classification Based on Fuzzy
Relations

SHINICHI TAMURA, STUDENT MEMBER, IEEE, SEIHAKU HIGUCHI,
AND KOKICHI TANAKA, SENIOR MEMBER, IEEE

Abstract-A method of classifying patterns using fuzzy relations is relation fi(x,y) is given to each of the pairs of patterns in
described. To start with, we give a suitable value of the measure of sub- X. Any fi(x,y) will do if it satisfies conditions (1) and (2);
jective similarity to each pair of patterns that is taken from the population
of patterns to be classified. Then a similitude between any two patterns is for example, subjective similarities, normalized correlations,
calculated by using the composition of a fuzzy relation. The similitude or potential functions, etc., may be conceived.
induces an equivalence relation. Consequently, we can classify the present Now, we define the n-step fuzzy relation fn(x,y) by
population of the patterns into some classes by the equivalence relation.
An experiment of the classification of portraits has been performed to fn(x,y) = supmX2 [f1(x,),f-(x1,x2),
test the method proposed here. xl,x2,

*fi(Xn- 1,], n = 2,3,*.
Then

I. INTRODUCTION

INCE Zadeh published the fuzzy set theory [1]-[6], fX+w(x,Y) = sup min [fX(x,x1n),
)it has been applied to some fields such as automata, ..., f1(Xn-1Xn)f1(xn,y)]

learning, and control [7]-[10]. We introduce a concept of
the fuzzy relation [1] to measure the subjective similarity > sup min [f(xnx)X1,.*.* ,xn-2,xn-1eX
as follows.

In the classification of smells and the classification of , f1(Xn- 1Y),f1(Y,y)]
pictures, etc., subjective information plays an important - fn(x,y).
role. This subjective information may be represented by the
fuzzy relation that corresponds to the subjective similarity. Therefore we see
However, since such a primary fuzzy relation is made on 0 . f1(x,y) . f2(x,y) . ... < f (x,y)
the basis of a personal subject, it does not satisfy the
axioms of distance. Hence in this paper we construct an < fn+1(x,y) < *.* < 1 (3)
n-step fuzzy relation by the composition of the fuzzy and we have the similitudef(x,y) in [0,1] such that
relation, and define a similitude as a limit value of the
n-step fuzzy relation in order to satisfy the axioms of f(x,y) = lim fn(x,y).
distance. The similitude defined in such a way induces an
equivalence relation. Thus we can classify patterns by the We will show some important properties of f(x,y) in the
equivalence relation. following.

Definition 1: Let x and y be two elements of X. Then x
and y are said to have a stronger relation than A, written

II. FUZZY~RELATION xR,y, ifff(x,y) . A. Symbolically this is expressed as
Let X be a set of patterns. The fuzzy relation A on X is xR _y_f(x,y) >

characterized by fA(x,y) E [0,1], for all x,y e X. In this
paper, we first consider a one-step fuzzy relation fi(x,y) Lemma 1: For all x,y,z E X,
satisfying the two conditions f(x,z) . min [f(x,y),f(y,z)].

f1(x,x) = 1 x\I X (1) Proof: See Appendix I.
fi(X,Y) = fi(y,x), b'x,y E X. (2)

Theorem 1: R. is an equivalence relation on X.f1(x,y) f1(y,x, Vx,y K. (2) Proof:
Condition (1) means that x is perfectly the same with x. 1) From (3) and the assumptions, we have
Condition (2) means that the fuzzy relation considered here
is symmetric. Assume that the value of this one-step fuzzy 1 = f1(x,x) . f(x,x) . 1.

Thenf(x,x) = 1, or xR>x, for all i. E [0,1].
Manuscript received March 12, 1970; revised September 1, 1970. 2) By the assumption, f1(x,y) = f1(y,x). Then fn(x,y) =
The authors are with the Department of Information and Computer f (y,X), and we can conclude that f(x,y) = f(y,x).
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Fig. 1. One-step fuzzy relation f1(x,y) of Example 1. Fig. 2. f(x,y) of Example 1.

3) From Lemma 1, we have Proof: It is sufficient to show that xR,y => xRMY.
Assume that xR,y, thenf(x,y) .2 .2 ,. Therefore, xR,y.

f(x,z) 2 min [f(x,y),f(y,z)]. Q.E.D.

Therefore, we can conclude that Conversely, if f,(x,y) is changed, we have the following
theorem.

xRAy,yRAz xRAz. Q.E.D. Theorem 3: Assume f,(x,y) < f,'(x,y), for all x,y E X,
let RA be an equivalence relation induced byf,(x,y), and let

Thus, by Theorem 1, we see that we can classify the RA' be one byf,'(x,y). Then RA refines RA'.
patterns using the partition induced by the equivalence Proof: The proof is obvious.
relation RA with the appropriate threshold A. Theorem 4: If f(x,y) = 1, for all x,y c X such that
Example 1. Let X = {x',x2, . ,x5} and f,(x,y) be as x + y, then p(x,y) I - f(x,y) satisfies the axioms of

follows. distance.
Proof:

1) Since by the assumptions 0 < f(x,y) < 1, for x = y,
XI X 2 X3 X4 X5 and f(x,x) = 1, we have p(x,y) > 0, for x # y, and

x2 I p(x,x) = 0.
x2 0.8 1x32 0 0.4 1 2) Since f(x,y) = ft(y,x), then p(x,y) = p(y,x).
X4 0.1 0 0 1 3) By Lemma 1,
x5 0.2 0.9 0 0.5 1

f(x,z) . min [f(x,y),f(y,z)] . f(x,y) + f(y,z)- 1.

This table is illustrated in Fig. 1. Then we have f(x,y) - Then
f3(x,y) as follows. p,).p(y)+(y). Q.E.D.

When f(x,y) = 1 holds for some x y, the assumption of
2

-- Theorem 4 is not satisfied. In such a case, the following
Xl x2 X3 X4 X5 theorem can be easily demonstrated.

X1 1 Theorem 5: Let R, be a set of the equivalence classes
x2 0.8 1X3 0.4 0.4 1 induced by R, on X, and x and be two elements of Rl.
x4 0.5 0.5 0.4 1 Let x and y be arbitrary elements in x and y, respectively.
xS 0.8 0.9 0.4 0.5 1 Then p(x,y) = 1 - f(x,y) satisfies the axioms of distance.

Note that if we make changes such as f *-> p, > - <

sup ÷-* inf, and max -+ min, our approach will be changedThis table is illustrated in Fig. 2. We have the partitions into the complementary one (see Mizumoto et al. [10]).
(see, e.g., Harrison [11]) When the threshold i is not changed, we may memorize

Ro = Ro 3 = {[X1,X2,X3,X4,X only whether eachf,(x,y) is greater than 2 or not, instead of
R0.45 = {[X1,X2[x4'x51,[X3] } memorizing the values off,(x,y). For such a case, let us0.5 {',X2,X4,X5],[x3r } consider the transitive closure (see Harrison [11]). The

o = {[X',x2,x5],[x4],[x3]} transitive closure of QA~, written QA, is defined as

RO 85 = {[X'],[x2,x5],[x4],[x3]} 0

R1= {[xl],[x2],[x5],[x4],[x3]}- QA =U QA QA U (QAQA) U (QAQAQA) U..
Thus the patterns are classified by the partition induced where QA is a relation on X. Let
by RA.

Theorem 2: Let i2>,ui. Then R, refines R,z. xQay fi(x,y) .2.i
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Then, since xQAx anid xQy <> yQ,,x, for all A e [0,1], QA is Theorem 7: Let x 0 y and X' = X - {x}. Then
the equivalence relation on X. Roughly speaking, the fn(x,y) < sup fj(x,x1), j = 1,2 ... ,n.
classification by QA is based on whether there is a path x1ex'
connecting two patterns or not. Proof: See Appendix II.

Theorem 6: For all i in [0,1], QA refines RA.
Proof: It is sufficient to show that xo,y -= xRAy.

Assume xy,j then, for some integer n, xQjny. Then there IV. FINITE SETS
exist x1,x2,* *. ,xn_1 in X such that

In actual cases, we usually deal with only the finite number
fl(x,x1) . )l,qf(Xl,x2) . J1,f1(Xn 1,y) 2 )- of the patterns. Let us consider the equivalence relations on

That is, such a finite set.
Theorem 8: If the number N of elements in Xis finite, then

f,(x,y) . min [f1(x,x1),f1(x1,x2), . 9,f1(xn1,Y)] . RA = Q = QN1
Then

Proof: The latter half of the theorem is obvious (seef(x,y) . fn(x,y) . i Harrison [11]). Let us show that RA is equal to Q.- Since
orQ.Sic

orXRJy Q.E.D. we have shown that QA refines R. in Theorem 6, it is
A)*y. Q.E.D. sufficient to show that RA refines Q,. Assume that xRJy.

In Section IV we will show that if X is finite, Qz becomes Then
equal to RA. Furthermore, we can easily obtain the same f(XY) = fN- I(X,Y) max mi [f1(x,xj),
theorems as Theorems 2 and 3 for QA. XI,' ,XN-2EX

f1(Xl X2)9 - .,l(XN- 9J)] 2 i
III. ABBREVIATION FORM This means that there exist xl, * * ,XN -2 E X such that

We show an abbreviation form offn(x,y) as a preliminary f1(X9X1) . J,f1(X1,x2) . ...A 9f1(XN-2Y) .2A
step to discussing the properties when the pattern set X is
finite. Let so that

g.(x,x,2,- *.,Xn- 1,Y) = min [f1(x,x),f1(x1,x2), XQAX1,XlQAX2, XN-2QAY
*.* * f(x_ We see xQ,N- ly or xQ-y. Q.E.D.

Then When X is finite, it is sometimes convenient to use the
fuzzy matrix representation. We represent the fuzzy

fn(X,Y) = SUp gn(x,x1sI, 9Xn1Y). matrix as
XI"1,*** Xn-lc-X

Generally speaking, if xi = xj, then F = Jjf1(x1,xj)jj, ij = 1,2, *,N.

g *(x,x-,.. xi + 1, X ,y) Let us show some fundamental properties of our fuzzy
< g ,-j+(x,x1 . ... X matrix. We denote by aij the (i,j)th entry of a fuzzy matrix A,

g Vxxl ,xi,x+lS vn-lYJ where 0 . ai1 . 1. We define
This implies that we can remove the loop (xi,xi 1,.. ,xj) in
the string (x,x1,, *,xn1,y) when we calculate fg(x,y). A < B ai1 < b
Therefore, we have the abbreviation form I = jm

fn(x,y) = max g9n(x,y) where
kGK

where = fl, if i =j
where sup gn(x,x1,- *-,Xk,Y,Y,-* i,y), 09, if i j

g9n(x,y) =-(xI,' ,xk)eXk k.=1 C = AoB ci = max min (aik,bkj)k = 09, l k
fi(x,y)9 k = O Am+' = Amo A

Xk = {(XI, ,Xk) xX1 X - {X,y},x2 E X - {X,Xl,y}, 4A = I

..., Xk
E X - {XXl, ',Xk-1,Y}}

p = min (n - 1,N- 2) C = max (A,B)= cij =(aij, if aij > bij

K = {0,1, ,} Then, since all the diagonal elements of F are now equal to

In our case, since f1(x,x) = 1, when X is finite, we can unity, we have (see Mizumoto et al. [10])
easily show that (see Wee et~a?. [9], Mizumoto et al. [10]) 1 -< F -< F2 .. e e< pNi = FN =. = Fa.

fN- 1(x,y) = fN(x,y) =.* * = f(x,y) The (i,j)th entry of F" is fk(x',xj). Hence we can calculate
where N is the number of elements in X. f(x',x1) easily and rather quickly by using Fk o Ek = F2k.
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As in Example 1, we have V. EXPERIMENTAL RESULT

[1 0.8 0 0.1 0.2] Portraits obtained from 60 families were used in our
0.8 1 0.4 0 0.9 experiment, each of which is composed of between four

F = 0 0.4 1 0 0 and seven members. The reason why we chose the portraits
0.1 0 0 1 0.5 is that we had conceived that even if parents do not resemble
0.2 0.9 0 0.5 1 each other in face, they may be connected through their

1 0.8 0.4 0.2 0.8~ children, and consequently we could classify the portraits

I0.8 1 0.4 0.5 0.9 into families. First, we divided the 60 families into 20 groups,
F2 = FoF= 1 0.4 0.4 1 0 0.4 each of which was composed of 3 families. Each group was,

F0. 0.4 10 0.j on the average, composed of 15 members. The portraits of
0.2 0.5 0 1 0.5 each group were presented to a different student to give
L0.8 0.9 0.4 0.5 1 the values of the subjective similarity f1(x,y) by 5 rank

[1 0.8 0.4 0.5 0.8] representation to all pairs between them. The reason why
0.8 1 0.4 0.5 0.9 we used the 5 rank representation instead of continuous

F = 0.4 0.4 1 0.4 0.4 = F4 = Fs =* = Fo. value representation is that it had been proved that the
0.5 0.5 0.4 1 0.5 human being cannot distinguish into more than 5 ranks in
0.8 0.9 0.4 0.5 1 the end. Twenty students joined in this experiment. Two

Thus examples of the experiment are shown in Table I, Table II,
IThusF -< F2 3 4 - Fig. 3, and Fig. 4. In Table I, the 5 rank representations are
I-< F -< F2 < F3 = F4 = . . = Ft converted to the values in [0,1]. In our case, the number

Next, we show a divided calculation method of a fuzzy of patterns is not so many that we can classify by inspection
matrix. If C = A o B, then without calculatingfn(x,y).

Since the levels of the subjective values are different
max mm(aikNbkj) according to individuals, the threshold was determined in

=max [N max min (aik,bkj), max min (aik,bkj)] each group as follows. As we bring down the threshold, the
= max [max min (ak,bkJ), max mn (akk,bkJ)]. number of classes decrease. Hence, under the assumption

that the number of classes c to be classified was known to
We can then obtain the following results. If A and B are

ta h ubro lse ob lsiidwskont

We a be 3, bringing down the threshold we stopped at the value
divided as which divided the patterns into 3 classes (collection of the

A= [D E] and B [H J] patterns composed of more than 2 patterns that have a
F G [K L stronger relation than A with each other) and some non-

then connected patterns. However, as in the present case, when
some f1(x,y) take the same value, sometimes there is no

AoB = max (Do H, Eo K) max (D o J, E o L)1 threshold by which the patterns are divided into just c given
[max (F o H, G o K) max (F o J, G o L) classes. In such a case, we made it possible to divide them

/ D o H D OJ1 E K E O L into just c classes by stopping the threshold at the value
- max 'F oH Fo oK GoL where the patterns are divided into less than c classes and

separating some connections randomly that have a minimum
This is the same form as that of the nonfuzzy matrix. f1(x,y) of connections that have the stronger relation than

Let us consider the case when a new pattern xN+I comes the threshold.
into X. The pattern set X becomes X + {xN+1}. We denote The correctly classified rates, the misclassified rates, and
a new n-step fuzzy relation on X + {xN+ } by fg'(x,y). the rejected rates of 20 groups were within the range of
Generally speaking, f,'(x,y) becomes different from f,(x,y). 50-94 percent, 0-33 percent, and 0-33 percent, respectively,
After some manipulations, we obtain and we obtained the correctly classified rate 75 percent,

fn'(xixi)- max [fn(xi,x ), mm {f, '(xi N+ 1) the misclassified rate 13 percent, and the rejected rateNn1s -nXxx X "(Xi,XN ) 12 percent as the averages of the 20 groups. Here, since the
fs(xN+ 'Xi) min {fn-2(xixN+ 1) classes made in this experiment have no label, we calculated

f2/(XN+ 'lXJ)}b-,.X min fi/(xi,xN+ 1), these rates by making a one-to-one correspondence between
f 11(XN+ 1',i)il, Xixi E X 3 families and 3 classes, so as to have the largest number of

fnf(XN+i,xN+l) 1 correctly classified patterns.
f (X+ ',x') = fn'(xi,xN+ 1)

= max min [f1t(xN+ l,x1),f_1(Xx1xi)], VI. CONCLUSION
xjeX~ ~ ~ ~ i We have studied pattern classification using subjective

x e X* information and performed experiments involving classifica-

However, in almost all cases it is easier to recompute the tion of portraits. The method of classification proposed here
Fn than to calculate by these formulas. is based on the procedure of finding a path connecting 2
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TABLE I

SUBJECTIVE SIMILARITIES OF FIG. 3

PortraitNumber 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1
2 0 1
3 0 0 1
4 0 0 0.4 1
5 0 0.8 0 0 1
6 0.5a 0 0.2 0.2 0 1
7 0 0.8 0 0 0.4 0 1
8 0.4 0.2 0.2 0.5a 0 0.8 0 1
9 0 0.4 0 0.8 0.4 0.2 0.4 0 1
10 0 0 0.2 0.2 0 0 0.2 0 0.2 1
11 0 0.5a 0.2 0.2 0 0 0.8 0 0.4 0.2 1
12 0 0 0.2 0.8 0 0 0 0 0.4 0.8 0 1
13 0.8 0 0.2 0.4 0 0.4 0 0.4 0 0 0 0 1
14 0 0.8 0 0.2 0.4 0 0.8 0 0.2 0.2 0.6 0 0 1
15 0 0 0.4 0.8 0 0.2 0 0 0.2 0 0 0.2 0.2 0 1
16 0.6 0 0 0.2 0.2 0.8 0 0.4 0 0 0 0 0.4 0.2 0 1

a This value was converted from 0.6 to 0.5 for division into just three classes.

TABLE II

THEf(X,Y) (= f6(X,y) = f7(X,y) = ) OF TABLE I

Portrait Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1
2 0.4 1
3 0.4 0.4 1
4 0.5 0.4 0.4 1
5 0.4 0.8 0.4 0.4 1
6 0.6 0.4 0.4 0.5 0.4 1
7 0.4 0.8 0.4 0.4 0.8 0.4 1
8 0.6 0.4 0.4 0.5 0.4 0.8 0.4 1
9 0.5 0.4 0.4 0.8 0.4 0.5 0.4 0.5 1
10 0.5 0.4 0.4 0.8 0.4 0.5 0.4 0.5 0.8 1
1 1 0.4 0.8 0.4 0.4 0.8 0.4 0.8 0.4 0.4 0.4 1
12 0.5 0.4 0.4 0.8 0.4 0.5 0.4 0.5 0.8 0.8 0.4 1
13 0.8 0.4 0.4 0.5 0.4 0.6 0.4 0.6 0.5 0.5 0.4 0.5 1
14 0.4 0.8 0.4 0.4 0.8 0.4 0.8 0.4 0.4 0.4 0.8 0.4 0.4 1
15 0.5 0.4 0.4 0.8 0.4 0.5 0.4 0.5 0.8 0.8 0.4 0.8 0.5 0.4 1
16 0.6 0.4 0.4 0.5 0.4 0.8 0.4 0.8 0.5 0.5 0.4 0.5 0.6 0.4 0.5 1

[I] GRANDMOTHER Q PARENT

11/ f ) O :PARENT A CHILD

6 13 A CHILD ff(x,y)=.8

FAMILY 1 FAMILY 2 fi(x,y)-.8 FAMILY I FAMILY 2

fi(x,y)=.6

CORRECTLY CLASSIFIED
CORRECTLY CLASSIFIED - 16 RATE 14

|CLRRATE 16 MISCLASSIFIED RATE =T4011FAMILY 3 REJECTED RATE

FAMILY 3 REJECTED RATE 16 14

Fig. 3. Portrait classification of Table I. Fig. 4. Example of portrait classification.
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patterns. Therefore, this method may be combined with nonsupervised learning and may also be
applicable to information retrieval [12] and path detection.

APPENDIX I

PROOF OF LEMMA 1

fm + n(x,Z) = sup min [fX (x,x l),*,i(xm+n ,Z)]
Xl,* *Xm+n-I

> sup sup min [f1(x,x1),-, f(xm j,Y),fj(Y,Xm+ 1), ,fi(xm+n-1,Z)]
Xi, * * * Xm- I Xm+ 1, * * * ,xm+n- I

= sup sup min [min {f1(x,x1),*.*,f1(x,_1,y)}, min {fl(Y,Xm+ 1), *,fl(Xm+n- 1,Z)}]
Xi, * * Xm-I Xm+ 1, * * *,Xrm+n- I

= min [ sup min {f1(x,x 1) , (xm _1,)}, sup min {fi (y,xm + 1), fl (Xm + n-Z)}]
Xi,, * * * Xm- I Xm+ 19 * * *Xm+n -I

= min [fm(xY),fn(Y,Z)].

We obtain the following inequality as m -+ oo and n -÷ oo:

f (x,z) . min [f(x,y),f(y,z)].

APPENDIX II

PROOF OF THEOREM 7

fn(X,Y) = sup sup min [min {f1(x,x),.. ,f1(xj_1,xj)}, min {1(xj,xj+ 1),* * (Xn- 1,Y)I]
xj, * X* IX_ EX' XI, * *,Xj- leX'

= sup Im sup min {If(x,x1), *f,f(xj1-,xj)}, min {f,(xj,xj+1),J(x.- jj)j
Xj,-* *,Xn- EX X1 * * * , IX,_e

= ~,** sup min [fj(x,xj), min {f1(xj,xj+l), , f1(xn1,y)}] < sup fj(x,xj)xi,'*** xn-IGX' Xj, * *Xn- EX'

= SUpf(x,x1).
XjEX '
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