
ISSN 1054�6618, Pattern Recognition and Image Analysis, 2012, Vol. 22, No. 1, pp. 92–98. © Pleiades Publishing, Ltd., 2012.

INTRODUCTION

Similarity measures and dual to them dissimilarity
measures are central to the theoretical basis of cluster
analysis and pattern recognition techniques. The final
result of the partition of objects into classes for a given
partition algorithm depends crucially on their choice
[5, 47]. We used the axiomatic approach to arrange an
infinite set of similarity measures and to limit the use
of inappropriate measures. In this context, we intro�
duce the notion of the equivalence of similarity mea�
sures [15, 17], based on which the classes of equivalent
measures are indicated.

The elementary theory of similarity considers only
the description of objects that are represented by finite
descriptive sets. The basis of the theory of similarity is
the following sections:

1. Descriptive sets, relationships, operations and
measures on their basis;

2. Axioms of similarity measures of two descriptive
sets (an absolute measure of similarity, relative inclu�
sion measures, the relative similarity measure;

3. Equivalence of similarity measures and classes of
equivalence of measures;

4. Measures of similarity and dissimilarity;
5. Harmonization of similarity measures with the

algorithms for organizing the descriptive sets;
6. Similarity measures and their relationship with

measures of diversity;
7. Multiple similarity measures;
8. Classes of equivalent multiplace similarity mea�

sures.
The calculations of various indices and coeffi�

cients of similarity, which were made on the basis of
measurements, were initially carried out approxi�
mately based on intuition and often lead to errone�

ous results. For more than 100 years, beginning with
the work of Swiss botanist P. Jaccard [31], a number
of different coefficients of similarity and dissimilar�
ity has been suggested in biology and geography,
many of which were erroneous. Extensive reviews
on the subject often only provide an opportunity to
trace the history of the introduction and the use of
this or that coefficient [2–3, 6, 7, 21–30, 32, 33,
35–46, 48, 49, 51].

A comparative analysis of similarity coefficients has
only been carried out on some hypothetical examples
[26]. To remedy this situation, it is necessary to verify
the formal grounds that allow us to calculate the coef�
ficients of similarity. The measurements and calcula�
tions of a similar nature were applied to different
objects and their combinations and their variety has
forced the researchers to distract from the observed
relations of individual objects and move to generalized
formal concepts and theory.

DESCRIPTIVE SETS

The mathematical concept of a “descriptive set” is
to explain the concept of “assemblage,” which is
widely used in biology and geography. A descriptive set
is a finite set, each element of which is assigned a pos�
itive number (weight) [9]. Since the descriptive set is
determined by the values of weights, then we will use
an equivalent concept, i.e., descriptive collection,
which is an ordered set of weights.

Relations of equality and inclusion are set based on
descriptive sets for each of the pairs a = 〈a1, …, ar〉 and
b = 〈b1, …, br〉 as follows:

a b ai⇔ bi i = 1 … r, ,( )= =

a b ai bi i = 1 … r, ,( )≤⇔≤
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and operations of conjunction, disjunction, and dif�
ference are written as follows:

The weight of the descriptive vector (set) is the sum
of weights of its components as follows:

Then, the following weights of the descriptive sets
are often used:

Five types of weights of the descriptive sets are of
particular note:

1. Ordinary finite sets (SFVs) ai ∈{0, 1} (i = 1, …,
r).

2. Finite multisets (FMVs) ai ∈{0, 1, 2, …, n}(i =
1, …, r) [8, 20].

3. Weighted sets (DWVs) ai ≥ 0, (i = 1, …, r) [9].
4. Normalized descriptive vectors by the compo�

nents (NDVCs) 0 ≤ ai ≤ 1, (i = 1, …, r).
5. normalized overall descriptive vectors (NDVWs)

0 ≤ ai ≤ 1, a1 + … + ar, (i = 1, …, r).
For each of these types of descriptive vectors, the

considered similarity measures have some specific fea�
tures. For this reason, in the future, we will specify
types of sets of descriptive vectors that run these or
other properties of similarity measures.

SYSTEMS OF AXIOMS OF ABSOLUTE 
SIMILARITY MEASURES

The absolute similarity measure of two descriptive
sets a and b(J(a, b)) defined on set E of all considered
types of weights of descriptive sets (1–5) is determined
by the following system of axioms of the first group
[18]:

ASM 1. J(a, b) ≥ 0; a, b ∈ E;
ASM 2. J(a, b) = 0 ⇔ a ∧ b = θ; a, b ∈ E;
ASM 3. J(a, b) = J(b, a); a, b ∈ E;
ASM 4. J(a, b) ≤ J(a, a); a, b ∈ E;
ASM 5. J(a, b) = J(a, a) ⇔ a ≤ b; a, b ∈ E;
ASM 6. J(λa, λb) = λJ(a, b), λ > 0; a, b ∈ E;

a b∧ min a1 b1,( ) … min ar br,( ), ,( );=

a b∨ max a1 b1,( ) … max ar br,( ), ,( );=

a\b a1 min a1 b1,( )– … ar min ar br,( )–, ,( ).=

m a( ) a1 … ar,+ +=

m θ( ) 0 θ 0 … 0, ,〈 〉 .= =
⎧ ⎪ ⎨ ⎪ ⎩

r

m a b∧( ) min ai bi,( );

i 1=

r

∑=

m a b∨( ) max ai bi,( );

i 1=

r

∑=

m a\b( ) m a( ) m a b∧( )–=

=  ai

i 1=

r

∑ min ai bi,( ).

i 1=

r

∑–

ASM 7. J(a, b) + J(b, c) ≤ J(a, c) + J(b, b); a, b,
c ∈ E.

The system of axioms of absolute similarity mea�
sures is consistent. For example, measure J(a, b) =
m(a ∧ b) satisfies the given axioms.

The second group of axioms is as follows:
ASM 8. The absolute similarity measures of two

descriptive sets do not depend on other descriptive sets
of multitude E.

ASM 9. The absolute similarity measures are only
defined on descriptive sets, each component of which
is measured in the same ratio scale.

RELATIVE MEASURE OF INCLUSION

The proposed system of axioms of absolute similar�
ity measures allows us to construct different relative
measures, in particular measures of the inclusion of
one descriptive set into another. The measures of
inclusion are determined by more than just the type of
NDVW.

Corollary fact from axioms. It follows from ASM1

and ASM2 that 0 ≤  ≤ 1 and it follows from

ASM3 and ASM4 that J(a, b) ≤ J(b, b). Because of the

symmetry, we have 0 ≤  ≤ 1.

Let us denote the received ratio in the following
form:

Let us refer to these as the measures of inclusion of
descriptive set a into b and b into a, respectively. Based
on ASM1, ASM2, ASM5, and ASM6, we have the fol�
lowing properties K(b; a):

RIM 1. 0 ≤ K(b; a) ≤ 1 (limitedness);
RIM 2. K(b; a) = 0 ⇔ a ∧ b = θ (minimum inclu�

sion);
RIM 3. K(b; a) = 1 ⇔ a ≤ b (maximum inclusion);
RIM 4. K(λb; λa) = K(b; a) (homogeneity).
For example, it is obvious that measure K(b; a) =

 satisfies the above properties. Measures of

inclusion on NDVW�type vectors are meaningless
because m(a) = m(b) = 1. The properties of RIM1–
RIM 4 for measures of inclusion can be taken as a sys�
tem of axioms of measures of inclusion for the descrip�
tive normalized vectors. ASM8 axiom can be written
as:

RIM 5. K(b; a) = f[m(a), m(b), m(a ∧ b)] and
K(a; b) = g[m(a), m(b), m(a ∧ b)], where f and g are
any continuous functions of three variables on the sets
of numbers.

J a b,( )
J a a,( )
�������������

J a b,( )
J b b,( )
�������������

K b; a( ) J a b,( )
J a a,( )
�������������,=

K a; b( ) J a b,( )
J b b,( )
������������� .=

m a b∧( )
m a( )

������������������
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It follows from ASM4 that

We obtain the continuum of measures of inclusion
that are organized by parameter τ as follows:

Because of the symmetry we get:

In biology and geography, the following measures
of inclusion are mainly used:

as well as dual measures of exclusion:

RELATIVE SIMILARITY MEASURES

From the proposed system of axioms for absolute
similarity measures a number of consequences can
also be derived which are necessary for the construc�
tion of relative similarity measures. For example,
based on two inequalities J(a, b) ≤ J(a, a) and J(a, b) ≤
J(b, b) we obtain the following relations:

We will refer to these relations as “relative similarity
measures” between the descriptive sets a and b and
denote them as K0(a, b) and K1(a, b), respectively.

From the axioms of absolute similarity measures
for these measures, the following properties, which
can be taken as axioms, are fair:

RSM 1. 0 ≤ K(a, b) ≤ 1 (axiom of limitedness);
RSM 2. K(a, b) = K(b, a) (axiom of symmetry);

J a b,( ) J a a,( ) 1 τ+( )J a a,( ) τJ a b,( )τ– 0.≥≤ ≤

Kτ b; a( ) J a b,( )
1 τ+( )J a a,( ) τJ a b,( )–

�������������������������������������������������,=

K0 b; a( ) J a b,( )
J a a,( )
�������������.=

Kτ a; b( ) J a b,( )
1 τ+( )J b b,( ) τJ a b,( )–

������������������������������������������������,=

K0 a; b( ) J a b,( )
J b b,( )
������������� .=

K0 a; b( )

min ai bi,( )
i 1=

r

∑

bi

i 1=

r

∑

����������������������������,=

K0 b; a( )

min ai bi,( )
i 1=

r

∑

ai

i 1=

r

∑

����������������������������,=

F0 a; b( ) 1 K0 a; b( ),–=

F0 b; a( ) 1 K0 b; a( ).–=

0 2J a b,( )
J a a,( ) J b b,( )+
�������������������������������� 1;≤ ≤

0 J a b,( )
J a a,( ) J b b,( ) J a b,( )–+
��������������������������������������������������� 1.≤ ≤

RSM 3. K(a, b) = 0 ⇔ a ∧ b = θ (axiom of mini�
mum similarity);

RSM 4. K(a, b) = 1 ⇔ a = b (axiom of maximum
similarity);

RSM 5. K(λa, λb) = K(a, b) (axiom of homogene�
ity).

This system of axioms is not contradictory to it,
e.g., the relative similarity measure K(a, b) =

 satisfies it.

Based on the system of axioms ASM, a number of
consequences can be obtained.

Statement 1.
Function

K
τ
(a, b) = ,

–1 ≤ τ ≤ +∞,

satisfies the properties of the relative similarity mea�
sures (RSMs).

The continuum of relative similarity measures that
are organized by parameter τ tau, can be briefly writ�
ten as

where K0(a, b) = , –1 ≤ τ ≤ +∞.

Statement 2.
The two�parameter function

where K
τ
(a, b) = ; K

τ
(b, a) =

; K0(a, b) = ; K0(b, a) =

; –1 ≤ τ ≤ +∞; –∞ ≤ η ≤ +∞ satisfies the sys�

tem of axioms RSM.
Let us mark some specific measures as follows:

Note that the measures of inclusion disclose the
relationship between the compared objects more fully
than the widely used similarity measures, and similar�
ity measures are derived from measures of the inclu�
sion and give them the average estimation.

2m a b∧( )
m a( ) m b( )+
�������������������������

J a b,( )
1 τ+( ) J a a,( ) J b b,( )+[ ] τJ a b,( )–

�����������������������������������������������������������������������

Kτ a b,( )
K0 a b,( )

1 τ+( ) τK0 a b,( )–
�������������������������������������,=

2m a b∧( )
m a( ) m b( )+
�������������������������

Kτ; η a b,( )
Kτ

η a; b( ) Kτ

η a; b( )+
2

����������������������������������������
1/η

,=

K0 a; b( )
1 τ+( ) τK0 a; b( )–

��������������������������������������

K0 b; a( )
1 τ+( ) τK0 b; a( )–

�������������������������������������� m a b∧( )
m b( )

������������������

m a b∧( )
m a( )

������������������

Kτ; 0 a b,( ) Kτ a; b( )Kτ b; a( );=

Kτ; ∞– a b,( ) min Kτ a; b( ) Kτ b; a( ),[ ];=

Kτ; +∞ a b,( ) max Kτ a; b( ) Kτ b; a( ),[ ].=
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METRIC SIMILARITY MEASURES

Similarity measures, which satisfy the inequality of
four RSM measures six, are called metric similarity
measures.

RSM 6. K(a, b) + K(b, c) ≤ K(a, c) + K(b, b), K(b,
b) = 1 a, b, c ∈ E.

For example, K(a, b) =  is

a metric similarity measure.
If axiom RSM 4 is not fully performed for a mea�

sure (i.e., from condition K(a, b) = 1 ⇒ a ≠ b, ∀a, b ∈
E, this measure is called a quasi�measure of similarity.

For example, the K0; –∞
(a, b) = .

FRACTIONAL�LINEAR RELATIVE 
SIMILARITY MEASURES

Axiom ASM 8 can be written for the case of relative
similarity measures in the following form:

RSM 7. Similarity measure K(a, b) is only deter�
mined by m(a), m(b), and m(a ∧ b), i.e.,

K(a, b) = f[m(a), m(b), m(a ∧ b)],
where f is a continuous function of three arguments.

Statement 3. 
Let 

where αi and βi (for i = 1, …, 4) are unknown con�
stants. Then the relative similarity measure K(a, b) sat�
isfies the axioms of RSM with the following constants:
α1 = α2 = α4 = β4 = 0, α3 = 2, β1 = β2 = 1 – τ, β3 =
⎯2τ, –1 ≤ τ ≤ +∞ or

RELATIVE DISSIMILARITY MEASURES

The relative dissimilarity measure is the addition of
relative similarity measure up to the unit as follows:

The set of properties of dissimilarity measures
(RDM) follows from the axiom system RSM as shown
below:

RDM 1. 0 ≤ F(a, b) ≤ 1 (limitedness);
RDM 2. F(a, b) = F(b, a) (symmetry);
RDM 3. F(a, b) = 0 ⇔ a = b (minimum differ�

ence);

m a b∧( )
m a( ) m b( ) m a b∧( )–+
������������������������������������������������

m a b∧( )
min m a( ) m b( ),( )
�����������������������������������

K a b,( ) f m a( ) m b( ) m a b∧( ), ,[ ]=

=  
α1m a( ) α2m b( ) α3m a b∧( ) α4+ + +
β1m a( ) β2m b( ) β3m a b∧( ) β4+ + +
��������������������������������������������������������������������������,

Kτ a b,( )
K0 a b,( )

1 τ+( ) τK0 a b,( )–
�������������������������������������,=

K0 a b,( ) 2m a b∧( )
m a( ) m b( )+
�������������������������, 1– τ +∞.≤ ≤=

F a b,( ) 1 K a b,( ).–=

RDM 4. F(a, b) = 1 ⇔ a ∧ b = θ (maximum differ�
ence);

RDM 5. F(λa, λb) = F(a, b) (homogeneity).
If the property RDM3 is only partially performed,

i.e., when F(a, b) = 0 ⇔ a ≠ b, this measure is called
the measure of quasi�dissimilarity (denote this prop�
erty as RKDM3).

In the case of implementing dissimilarity measures,
the terms of the triangle inequality as follows:

RDM 6. F(a, b) + F(b, c) ≥ F(a, c), a, b, c ∈ E;
the dissimilarity measure is called distance.

When the properties RKDM3 and RDM6 are per�
formed, the measure is called quasi�distance.

EQUIVALENCE OF MEASURES

Before applying the axiomatic approach to the
introduction of measures of similarity and dissimilar�
ity, reviews of measures of proximity had a primarily
historical character. The author, who first used a cer�
tain rate, as well as those who introduced modifica�
tions to it for their own purposes, were mentioned;
usually anywhere from a dozen to several dozen differ�
ent coefficients of proximity were cited.

When using an axiomatic approach to the intro�
duction of measures of similarity and dissimilarity, a
continual set of different similarity measures ordered
by certain parameters appeared. There was a problem
of treatment with a continuum of measures, which was
qualitatively different from a separately identified
index.

The first works on the introduction of the equiva�
lence of similarity measures [4, 13, 17, 45] allowed one
to give a strict definition of the concept of equivalence
of similarity measures [15].

Definition 1. Two similarity measures K(a, b) and
K '(a, b) are equivalent to the family of descriptive set
E if for every pair a, b ∈ E there is a monotonically
increasing function ϕ: K = ϕ(K'), and ϕ(0) = 0, ϕ(1) = 1.

Example 1. Consider the following class of equiva�
lent measures on the sets of SFV, FMV, DWV, and
NDVC:

Example 2. Inequivalent measures on vectors SFV,
FMV, DWV, and NDVC: K0; –1(a, b) and K0; 1(a, b) =

m(a ∧ b) .

Example 3. A class of equivalent measures on
descriptive vectors NDVW: K(a, b) = ϕ(m(a ∧ b)),
where ϕ is a monotonically increasing function, and
ϕ(0) = 0, ϕ(1) = 1.

Kτ; –1 a b,( )
K0; –1 a b,( )

1 τ τK0; –1 a b,( )–+
���������������������������������������,=

K0; –1 a b,( ) 2m a b∧( )
m a( ) m b( )+
�������������������������, 1– τ +∞.< <=

1
2
�� 1

m a( )
���������� 1

m b( )
����������+
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Typically, the simplest representative is usually
chosen from this class of measures as follows [4]:

The following definition is equivalent to the defini�
tion of equivalence [17]:

Definition 2. If, for any descriptive vectors, a, b, c,
d ∈ E, condition

K(a, b) ≥ K(c, d) ⇔ K '(a, b) ≥ K '(c, d)

is done. Then the measures K and K ' are equivalent
by E.

Note that the equation is either not achieved or
performed in both inequalities simultaneously.

A corollary fact. In Definitions 1 and 2, if we
replace the similarity measure K and K ' to their dual
dissimilarity measures F and F ', then we obtain a defi�
nition of equivalence for the dissimilarity measures.

Definition 3. If K(a, b) and F(a, b) are such that
there is a strictly monotonically decreasing function ψ
(ψ(0) = 0, ψ(1) = 1), and K(a, b) = ψF(a, b), then
K(a, b) and F(a, b) are called coequivalent [17].

We denote the equivalence using the sign || and the
coequivalence using the sign ⊥. Then. the following
statement is fair:

Statement 4.

If K1 || K2 and K2 ⊥ F, then K1 ⊥ F.

If K1 ⊥ F and F ⊥ K2, then K1 || K2.

The proof is given in [17]. For example, if K0(a, b)
|| K1(a, b) and K1(a, b) ⊥ F1(a, b), then K0(a, b) ⊥
F1(a, b).

Statement 5. Equivalent relative dissimilarity mea�
sures F

τ; –1(a, b) defined on descriptive vectors, such as
SFV, FMV, DWV and NDVC, are the distances at
τ ≥ 1. If F

τ
(a, b) are defined on descriptive vectors

(NDVW), they are distances at τ ≥ 0.

The first part of the proof of this Statement can be
found in [17]. Let us prove the second part of the state�
ment.

Proof. Suppose m(a) = m(b) = 1, then F
τ; –1(a, b) =

, –1 < τ < +∞. It is obvious that

1 – m(a ∧ b) = ρ(a, b) is the distance because, if
m(a) = m(b) = 1, the Hamming distance is 2(1 –
m(a ∧ b) = 2ρ(a, b). Consequently, F

τ ;–1(a, b) =

 is the distance if 1 – ϕ
τ
 > 0 and ϕ

τ
 ≥

0 or τ ≥ 0.

J a b,( ) m a b∧( ) min ai bi,( ),

i 1=

r

∑= =

ai

i 1=

r

∑ bi

i 1=

r

∑ 1.= =

1 m a b∧( )–
1 ϕτ– ϕτm a b∧( )+
����������������������������������������

ρ a b,( )
1 ϕτ– ϕτρ a b,( )+
������������������������������������

Statement 6. Equivalent relative dissimilarity mea�
sures.

F
τ; –∞

(a, b) 

= ,

ϕ
τ
 = , –1 < τ < +∞ for any descriptive vectors a,

b, c ∈ E are distances if τ ≥ 0.
The Proof. Previously [10] it has been proved that

the relative dissimilarity measure F0; –∞
(a, b) =

 is Yurtsev

distance. Let us express F
τ; –∞(a, b) through F0; –∞(a, b):

It is obvious that the relative dissimilarity measures
at 0 ≤ ϕ

τ
 ≤ 1 (τ ≥ 0) are distances.

For example, 

is the distance.

DEFINITION OF DIVERSITY MEASURES 
USING SIMILARITY MEASURES

Consider a set of descriptive vectors of type NDVW.
Let p, q ∈ E and have the following form:

From the set of equivalent measures, which are
defined based on E, let us take the simplest measure

We define the diversity measure of descriptive vec�
tor p =  as [11, 19]:

The dual measure of concentration is determined
by the relative dissimilarity measure [1]

m a( ) m b( ) 2m a b∧( )– m a( ) m b( )–+ +
m a( ) m b( ) 2ϕτm a b∧( )– m a( ) m b( )–+ +
�����������������������������������������������������������������������������������������

τ
1 τ+
���������

m a( ) m b( ) 2m a b∧( )– m a( ) m b( )–+ +
m a( ) m b( ) m a( ) m b( )–+ +

������������������������������������������������������������������������������������

Fτ; ∞– a b,( )
F0; ∞– a b,( )

1 ϕτ– ϕτF0; ∞– a b,( )+
�������������������������������������������� .=

F1; ∞– a b,( )

=  m a( ) m b( ) 2m a b∧( )– m a( ) m b( )–+ +
m a( ) m b( ) m a b∧( )– m a( ) m b( )–+ +

������������������������������������������������������������������������������������

=  m a b∨( ) m a b∧( )– m a( ) m b( )–+
m a b∨( ) m a( ) m b( )–+

��������������������������������������������������������������������������

p p1 … pr, ,〈 〉 , pi

i 1=

r

∑ 1 i = 1, …, r( ), pi 0;≥= =

q q1 … qr, ,〈 〉 , qi

i 1=

r

∑ 1 i = 1, …, r( ), qi 0.≥= =

J p q,( ) min pi qi,( ).

i 1=

r

∑=

p1 … pr, ,〈 〉

R p( ) min pi
1
r
��,⎝ ⎠

⎛ ⎞ .

i 1=

r

∑=

Q p( ) 1 R p( )– 1
2
�� pi

1
r
��, .

i 1=

r

∑= =
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MULTIPLACE SIMILARITY MEASURES

Multiplace similarity measures are widely used in
biology and geography to measure β�diversity [9, 15,
25, 34, 50]. An axiomatic approach to multiplace sim�
ilarity measures and their dual dissimilarity measures
is proposed in [9, 12, 14].

The following is a system of axioms for assessing
the degree of similarity of series of n descriptive vectors
{ai} (i = 1, …, n):

MSM 1. 0 ≤ K(a(1), …, a(n)) ≤ 1 (axiom of limita�
tions);

MSM 2. K(a(1), …, a(n)) = K( , …, ) (axiom
of symmetry), where i1, …, in is any permutation of the
indices 1, …, n;

MSM 3.

(axiom of minimum similarity);
MSM 4. K(a(1), …, a(n)) = 1 ⇔ a(1) = … = a(n)

(axiom of maximum similarity);
MSM 5. K(λa(1), …, λa(n)) = K(a(1), …, a(n)), λ > 0

(axiom of homogeneity).

CONCLUSIONS

The use of the axiomatic approach to constructing
an elementary theory of similarity has led, on one
hand, to the construction of a continuum of measures
of similarity and dissimilarity and, on the other hand,
to the separation of classes of equivalent measures,
which gives the same organization of descriptive vec�
tors and allows one to use only one the simplest mea�
sure of each class.

The development for similarity measures defined
based on NDVWs and the class of linear fractional
similarity measures (K

τ; –∞
) can now be considered

fully completed. These two classes of similarity mea�
sures and their dual dissimilarity measures are most
often used in biology and geography. In the future, the
elementary theory of similarity can be extended by a
homomorphism on the other objects and measures,
such us dependence and compatibility [16].
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